skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Skory, Brandon_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract N1‐Methylation of pseudouridine (m1ψ) replaces uridine (Urd) in several therapeutics, including the Moderna and BioNTech‐Pfizer COVID‐19 vaccines. Importantly, however, it is currently unknown if exposure to electromagnetic radiation can affect the chemical integrity and intrinsic stability of m1ψ. In this study, the photochemistry of m1ψ is compared to that of uridine by using photoirradiation at 267 nm, steady‐state spectroscopy, and quantum‐chemical calculations. Furthermore, femtosecond transient absorption measurements are collected to delineate the electronic relaxation mechanisms for both nucleosides under physiologically relevant conditions. It is shown that m1ψ exhibits a 12‐fold longer1ππ* decay lifetime than uridine and a 5‐fold higher fluorescence yield. Notably, however, the experimental results also demonstrate that most of the excited state population in both molecules decays back to the ground state in an ultrafast time scale and that m1ψ is 6.7‐fold more photostable than Urd following irradiation at 267 nm. 
    more » « less